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In experiments to measure the surface energy of a magnetically levitated molten 
metal droplet by observation of its oscillation frequencies, Rayleigh’s equation is 
usually used. This assumes that the equilibrium shape is a sphere, and the surface 
restoring force is due only to surface tension. This work investigates how the 
vibrations of a non-rotating liquid droplet are affected by the asphericity and 
additional restoring forces that the levitating field introduces. The calculations show 
that the expected single frequency of the fundamental mode is split into either three, 
when there is an axis of rotational symmetry, or five unequally spaced bands. 
Frequencies, on average, are higher than those of an unconstrained droplet ; the 
surface tension appears to be increased over its normal value. This requires a small 
correction to be made in all analyses of surface energy. A frequency sum rule is 
derived from a simplified model of the magnetic field which allows the corresponding 
Rayleigh frequency to be evaluated from the observed frequencies of the fundamental 
and translational modes. A more detailed analysis shows a similar correction but one 
that is also sensitive to the position of the droplet in the field. 

1. Introduction 
One method of measuring the surface tension of conducting liquids is to levitate 

a droplet in a magnetic field and measure the frequencies of surface oscillation modes. 
Use of the Rayleigh equation (Rayleigh 1879), which supposes an unconstrained 
droplet of spherical geometry, allows the observed frequencies to be linked to the 
required surface tension. 

In a spherical droplet the fundamental mode of oscillation has a five-fold 
degeneracy. Experimental observations, for example those of Keene, Mills & Brooks 
(1985), often reveal the presence of three or five closely spaced frequencies and so 
raise the question of just how reliable or precise are surface tension values derived 
from the Rayleigh equation. 

Levitation is accomplished using an alternating magnetic field with a gradient 
which allows an equilibrium to be established between the gravitational force on the 
droplet and the forces generated by the interaction of the induced electric currents 
with the applied magnetic field. In such conditions several possibilities exist through 
which oscillation spectra may deviate from those predicted for the unconstrained 
sphere : the droplet may rotate ; the droplet may become aspherical ; the surface 
restoring forces, usually dependent only upon the surface tension, may be modified 
by the electromagnetic field ; or there may be internal motion such as stirring of the 
material. 

This paper deals with the second and third of these possibilities. Rotation of a 
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spherical droplet is known to split the fundamental into five equally spaced bands 
(Busse 1984) and is well understood. The problem of stirring is not considered in this 
work. 

Warham (1988) has already made calculations on the oscillations of aspherical 
droplets of given geometry, and Cheng (1985) has looked a t  the problem of droplets 
in an electric field. This paper approaches the deformation problem in a different way 
from that used by these authors and concentrates on magnetic fields as the origins 
of asymmetry. Specifically it shows : 

(i) how external forces distort the droplet from sphericity ; 
(ii) how frequency spectra are affected by distortions from sphericity ; 
(iii) how electromagnetic forces modify the frequency spectra ; 
(iv) how to apply the general theory to describe the behaviour of a droplet in a 

magnetic field of linearly varying intensity. 
There are two general approaches to the problem: one is to  consider kinetic and 

potential energies and derive frequencies from the Lagrange equations ; the other is 
to derive an equation of motion from consideration of the forces involved. The second 
approach is used here and is restricted throughout to small permanent deviations 
from sphericity, so that linear perturbation theory can be used. Similarly, only small- 
amplitude oscillations of the deformed droplet are considered. Modifications of the 
frequency spectrum due to moderate- or large-amplitude nonlinear oscillations of the 
type reported by such authors as Trinh & Wang (1982) and Tsampopoulus & Brown 
(1983) are not investigated here. 

2. Basic equations 
In the calculations which follow, the approach used is first to set up equations 

which describe how the change in shape of a nearly spherical surface is related to the 
velocity of the fluid within the bulk of the droplet. The fluid velocity is then related 
to the pressure inside the droplet by using the hydrodynamic flow equation for a 
conducting inviscid fluid in an electromagnetic field. This leads to a matrix equation 
for the surface acceleration in terms of the internal pressure fluctuations. The 
curvature of the droplet is considered next. This allows both the permanent 
distortion to the droplet, due to the influence of levitating field, to be found and also 
yields a second relationship between the motion of the surface and the pressure. The 
explicit dependence of the surface movements upon the pressure can now be removed 
and the equation of motion of the surface derived. The final step is to show how the 
oscillation frequencies can be evaluated from the physical parameters of an actual 
droplet and its supporting magnetic field. 

2.1. Droplet shape and surface acceleration 

It will be assumed that the shapc of the droplet is only slightly distorted from that 
of a sphere of radius a, so that in spherical polar coordinates, r,8,(p, the droplet 
radius, rv,  is a function of direction and time, t ,  given by 

(2.1) 

where R(8, p) represents the time-independent deviation from sphericity, due to the 
effect of the levitating magnetic field, and ((8, pl, t )  the time-dependent deviation 
caused by vibration of the surface. Thus the shape of the droplet is described by the 
function 

ru(8,p, t )  = a{ l  +R(B,(p) + 5(8, 9, t )>,  

cr(r,O,p,t) = r-r,,(@,p,t), (2.2) 
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and space is divided into two regions by the surface 

(2.3) 
Points lying outside the droplet conform to the condition a > 0, and those inside to 
a < 0. 

To set up the equation of motion for the droplet shape consider the total 
(convective) differential of a, evaluated at the surface, that is 

d a  aa -- - - + u . V a  = 0, 
dt at (2.4) 

where u(x, y, z,  t )  is the bulk fluid velocity. The surface acceleration is therefore 

a2a du 
-- = -.va 

at2 dt 

if time-dependent product terms of order u2 or higher are neglected, that is, if 
attention is restricted to small-amplitude oscillations. 

2 .2 .  Hydrodynamic JEow equation and the magnetic pressure 

If the fluid is inviscid, the velocity in the bulk of the droplet is determined by the 
hydrodynamic flow equation 

where p is the pressure, p is the density, k is the unit vector in the upward z-direction, 
g is the acceleration due to gravity, B is the magnetic flux density, and J the electric 
current density. 

Numerical investigation of a magnetically levitated spherical drop by El-Kaddah 
& Szekely (1983) shows that the current penetrates only a very small region in the 
drop and the magnetic flux density decreases rapidly below the surface. To model 
this situation, suppose therefore that the magnetic flux density may be represented 
as a step function of the form 

B = Bo(r, 8, v, t) H ( 4 ,  (2.7) 

where B, is a vector field yet to be specified and H(a) is the Heaviside step function, 
so that outside the droplet (where a > 0) B = Bo and inside the droplet (where 
a < 0) B = 0. 

As is shown in the Appendix, a consequence of this assumption is that the 
electromagnetic forces, now excluded from the bulk of the fluid, make themselves 
manifest in the equations as an effective magnetic pressure, pt(8, v, t ) ,  on the surface 
of the droplet with magnitude 

(2.8) 

where ,uo is the permittivity of free space. Experimentally, Colgate, Furth & Halliday 
(1960) have found good evidence for just such a pressure. 

This magnetic pressure acts in addition to that generated inside the curved surface 
of the droplet by the surface tension, y ,  giving for the total pressure just below the 
surface of the droplet the boundary condition 

pi(?, 8, t)  = B2(surface)/2po 

p(surface) = yV.ri+pt. (2.9) 

Here ti is the outwardly directed normal to  the surface and V - n  its curvature. 
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Since the electromagnetic forces, J A  B, no longer directly appear in the 
hydrodynamic flow equation, splitting the pressure into a time-independent part, 
ps(r ,  B,rp), and a time-dependent part, p,(r, B,p, t ) ,  gives 

(2.10) 

which yields from the time-independent terms the hydrostatic pressure 

Ps = -Pgz+P,, (2.1 1 )  

where p ,  is a constant, and from the time-dependent ones 

du 1 
- = - -vp, .  
dt P 

(2.12) 

For an incompressible fluid V - u  = 0, so this last equation implies that V2p,  = 0. 
Consequently the time-dependent part of the pressure can be expressed as the series 

(2.13) 

where YY(0, rp) are complex spherical harmonics, and ar(t )  are time-dependent 
functions. 

2.3. Matrix description 

The above expression can be used to generate a matrix equation for the surface 
acceleration. From (2.5) and (2.12) the surface acceleration is 

(2.14) 

The two gradient vectors, V p  and Vrr, can be written in terms of vectors parallel and 
perpendicular to the position vector, r = r i .  This gives 

v p  = i ( i . v p ) - i  A (i A v p )  (2.15) 

i A - 
= r---r A L p ,  

ar r 

where the operator is defined by 

(2.16) 

(2.17) 

A 

(2.18) 
1 

Similarly : V a  = i-- i  A LV. 
r 

Equation (2.14) may thus be written 

and when expressed in terms of 5 and the a F ( t )  becomes 

(2.19) 

(2.20) 
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This equations refers to the surface, so r = ra = a(1 +R+c). Terms of order higher 
than R2 may be dropped, as may all products of time-dependent terms such as 
c ( t )aY( t )  and c. This leaves 

(2.21) 
a y  I 1 

-pa- = C. - [I + (1 - I)RI YY a~ +-C (LR)-LYY a ~ .  
a t 2  a a 

With the usual notation for the integral : 

~ ~ d V ~ d s s i n s ( Y ~ ) * f ( s . V )  yz” = (j, klf(e,V)l Lm), 

left multiplying (2.21) by (YF)* and integrating gives 

(2.22) 

-pa2(j, kli32c/W) = ~{l<j,k:IZ,m)+Z(l-l)(j,k~RIl,m)+(j, kl ( ~ ) - L l l , m ) } a Y .  

This is a matrix equation of the form 
(2.23) 

(2.24) 

with elements 
dgfk,lm = Z ( ~ , k ~ Z , m ) + Z ( Z - l ) ( j , k ~ R ~ Z , ~ ) + ( ~ , k ~  (LR)-LlZ, m).  

2.4 Curvature and droplet distortion 
To complete the matrix equation of motion for the surface, the a? terms must be 
eliminated from the above equation. To do this consider the boundary condition (2.9) 
and express the curvature, V-A,  in terms of 5. Since 

A = VU/IlVUll (2.26) 

and, from (2.18) l l~a l l  = [ I  -(I/r2) (LU)~]; (2.27) 
it follows that, provided the total deviation from sphericity remains small, 

ti = Vu{1+ (1/2r2)(tu)2} (2.28) 

(2.25) 

and hence 

Since 

where 

the curvature is 

Here the second 

therefore 

(2.29) 

(2.30) 

(2.31) 

1 v * A = VZa-- {L2a(Lu)2+ Lu. L(La)”. (2.32) 
2r4 

group of terms are of order (R+LJ3 and can be neglected, so 

2 a -  
r r2 

v-A = V2u = -+-LZ(R+[). (2.33) 

At the surface, r = ru, so using (2.1) this gives 

2 1 
a a 

V * h  = - ( 1  -(c+R)+ ( c+R)2- .* . )+ - (1  -2(5+R)+ *..) LZ(R+tj) (2.34) 
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or aV.A = 2 + (L2 - 2)  R + (t2 - 2)  5+4@- 2 G 2 R -  2RL2 5. (2.35) 

This equation describes how the curvature depends on the deviation from sphericity. 

2.5. Magnetic pressure and permanent distortions 

It is also necessary to describe how the magnetic pressure changes as the droplet 
deforms with time. Since 5 can be expanded as 

Y = C Y X l ? 4 5 > ,  (2.36) 

pt  can be split into a time-independent part, p:, and a time-dependent part of the 
general form 

(2.37) 

Bringing together the results o f  (2.11), (2.13) and (2.35), the boundary condition (2.9) 
becomes 

+ - (2  + (t2 -2) R + (f2 - 2 )  g- 2R(L2 - 2 )  5-2(L2 R )  0. (2.38) 

This result can be used to find the permanent distortion, R, of the droplet. At the 
surface 

z = r,cos0 = a ( l + R + l J ( % ) i q ,  (2.39) 

the permeant deformation can be expanded by writing the R ( 0 , q )  in terms of 
spherical harmonics : 

R ( 0 , v )  = c ( d ,  e IR) y:, (2.40) 

and since L2Y: = d ( d  + 1 )  Y: (2.41) 

consideration of the time-independent terms in (2.38) requires that 

(3 

hence for d > 1 ,  and correct to first order in R 

( d , e l R )  = -(!) (4  e I Pi> 
7 ( d - l ) ( d + 2 ) ’  

(2.43) 

Also from (2.42) it can be seen that for equilibrium, the net lifting force, F,, which 
balances the weight of the droplet, requires 

(2.44) F 2 3  = &a3pg = - ( 5 ~ ) -  3 :a2 ( 1  > 0 I d >  (1  - ( 1 , O  IR I 1 , O ) ) .  

2.6 Matrix equation of motion 
The matrix equation of motion can now be completed. Consideration of the time- 
dependent terms in (2.38) shows that there is a matrix equation of the form 

(2.45) 
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where the matrix elements of 9 are 

(2.46) 

The ar terms can therefore be substituted into (2.24) to  give a matrix differential 
equation for the components of 6 of the form 

(2.48) 

This is the required equation of motion. It is the equation of a set of harmonic 
oscillators, such that if A, is the 9th eigenvalue of d9- 'V ,  the oscillation frequency, 
wq is given by 

m: = Aq(y/pa3). (2.49) 

The corresponding eigenvector, 6, gives the shape of the 9th normal mode of 
vibration : 

CQ(644 = c q ( j >  k I C,)> (2.50) 

and so the total time-dependent deviation from sphericity, C, is 

(2.51) 

where A ,  is the amplitude of the 9th normal mode. This result describes how the 
surface of the droplet behaves with time; it is a linear combination of these normal 
modes of vibration. 

2.7. The normal modes 
In  order to determine the form and oscillation frequency of each normal mode it is 
necessary to find the eigenvectors and eigenvalues of the matrix dB-'%. To do this, 
first invert the matrix 

(a - ' ) jk ,  lm = (j, k I m )  -l(j> k IRI m>,  (2.52) 

to give, correct to first order in R ,  

then, multiplying out, 

( d & ' ) j k , l m  = l ( j ,  k l l ,m)+(12- I - j l ) ( j ,  k lRII ,m)+( j ,  k l ( h ) - f , l l , m ) ,  (2.53) 

and hence 

(dB-'%?),k, l m  = I ( 1 -  1 ) ( I  + 2)(j, k I I ,  m )  + ( I  - 1 ) ( I  + 2) (j, k I (h) - &I I ,  m )  

+ ( 1  - 1 ) ( Z  + 2)(Z2 - 1  -jl - 2j)(j, k: IRI I ,  m )  - 2j(j, k I (czR)I 1, m )  

The term (j, k I(h) -f,l I ,  m )  is evaluated by use of the identity 

(2.54) 
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2 ( j , k l ( L R ) - f 4 1 , m )  =j(j+ l ) ( j ,k lRlZ,m)-Z(Z+l) ( j ,  k lRlZ,m)- ( j ,  k1(~2R)1Z,m).  
(2.56) 

For the purpose of finding the eigenvalues, the results of first-order perturbation 
theory arc sufficient, so all off-diagonal terms between the non-degenerate 
unperturbed eigenvectors can be ignored. This corresponds to the condition j = 1, 
and hence the block-diagonal submatrices of d9F1% are 

(dB-lW)lk,,m = Z(Z-l)(Z+2)cYkm-3Z(Z-l)(Z+2)(Z, kIRI1,m) 

where akm is the Kronecker delta function. Note that all gravity terms have 
disappeared from the equation since integrals of the type ( 1 ,  k 1 1,Ol  I ,  m )  are equal to 
zero. 

This result can be used to  evaluate the form of the normal modes and associated 
oscillation frequencies of an actual droplet provided that the permanent distortion 
from sphericity, R ,  is known, and information is also available about how the 
magnetic pressure varies with any change in shape of the droplet. 

3. Simple applications of the theory 
The parameters required above are not commonly available. It should be possible 

by direct observation of a levitated droplet to measure its permanent distortion, but 
there remains unresolved the problem of the magnetic pressure terms. This prompts 
the question as to whether it is possible a t  this point in the analysis to obtain some 
useful results by making some simplifying assumption about the behaviour of the 
magnetic pressure. The following sections explore two such simplifications before 
moving on to a complete description of the magnetic pressure. They are 

(i)  to neglect those terms which involve differentials of the magnetic pressure in 
(2.57); physically this is equivalent to  the magnetic pressure a t  the surface of the 
droplet remaining constant as the droplet oscillates ; 

(ii) to assume that both the induced component of the magnetic field and the 
original supporting magnetic field remain unchanged as the droplet oscillates. 

3.1. Constant magnetic pressure : the Z = 2 fundamental vibrations 

To obtain a first approximation to the oscillation frequencies, suppose that the 
magnetic pressure at  the surface of the droplet is constant. The number of 
parameters affecting the frequency spectrum is considerably reduced. With this 
approximation, apt/a(Z, m I g) = 0 ,  and from (2.57) 

(dB-'%),k,lm = z(z-l)(z-k2)8km 

-2 ( d , e  IR)(Z, k l d ,  el 1, m){3Z(Z- l ) (Z+2)+$d(d+ 1)(Z2+51-2)}. (3 .1 )  

Two consistency checks can be applied to this equation. 
(i) Rayleigh's result can be recovered by setting R = 0.  d9V1% is now a diagonal 

matrix, with eigenvalues A, = Z(Z- l ) (Z+2) ,  and so from (2.49) the frequencies, as 
expected, are 

w; = z ( z - - 1 ) ( ~ + 2 ) ( ~ / ~ a 3 ) .  (3.2) 

(ii) An additional check on the calculation can be made by setting R = cYa/a, 
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FIGURE 1. Sections in the (5, %)-plane of a permanently distorted droplet with radius at the surface 
given by T, = a(1 +e2 E) for various values of e2. (For clarity of presentation, a has been 
successively increased by 10% but the actual distortion conserves the volume of the droplet.) 

that is, to a small increase in radius of the spherical droplet. With this distortion, 
(j, lc IRI I ,  m) = (Sa/a) S,,, and from (3.1) 

uf = 1(1-1)(Z+2) 1-3- (y/pa3).  ( 3 (3.3) 

This is the result that would be obtained by differentiating Rayleigh's equation 
directly, (3.2). 

In the sequence of oscillation modes, the condition 1 = 0 is forbidden since it 
describes a change of radius denied by the condition that the droplet is of constant 
density. The next mode, when 1 = 1 describes translational motion of the centre of 
mass, and does not correspond to an oscillation of the surface of the droplet itself. 
Among superficial vibrations the fundamental therefore corresponds to the condition 
1 = 2, and for these modes 

(dB-lW)z,,zm = 8Skm-C (d,eIR)(2,kId,e12,m){24+6d(d+ 1)). (3.4) 

These particular integrals are only non-zero for d = 0 , 2 , 4  in the above equation and 
since the condition d = 0 corresponds to  a change in radius, so only distortions from 
sphericity which contain terms with d = 2 and 4 need be considered. 

The number of arbitrary parameters can be further reduced if the z-axis is 
preserved as a rotational axis of symmetry. This condition corresponds to e = 0, and 
hence the only deformation of cylindrical symmetry that can affect the fundamental 
modes is of the form 

de 

R = €2 E + e 4  c7 (3.5) 

where e2 = (2,OlR) and e4 = (4 ,OlR) are two as yet undetermined constants. The 
droplet shapes corresponding to these two types of permanent distortion are shown 
in figures 1 and 2 as sections of the (z,z)-plane. 

Under the condition of e = 0 there can be no off-diagonal terms : the only non-zero 
elements occur when k = m (values of the required integrals are given in table 2 in 
the Appendix). Hence the eigenvalues, A,, are simply the diagonal elements 

(3.6) 

W B - l W ) z m ,  2m : 
( d W I W ) z o ,  2o = 8 - (5 /~) ! (60~, /7)  - 432~,/7&), 

(dA3-1W)2* l ,2* l  = 8- ( 5 / ~ ) : ( 3 0 ~ ~ / 7 )  4- 288~,/7nf, 

( d . 9 - 1 W ) 2  + 2, * = 8 + (5/7~)f( 6 0 4 7 )  - 72e3,/7d. 
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FIGURE 2. Sections in the (2, 2)-plane of a permanently distorted droplet with radius at the surface 
given by r ,= a ( l + c 4 q )  for various values of c p .  (For clarity of presentation, a has been 
successively increased by 10 YO but the actual distortion conserves the volume of the droplet.) 

m Frequency Symmetry Normal mode Intensity 

0 "z Z' dzz = (5/16x)k(3 COS' 0- 1 )  High 

(6 = in) 

d,, = (15/4n)~sinBcos0cosp, Low 
d,, = ( 15/4n)? sin 0 cos 0 sin p, 

High 

f l  Wn 

dZ2-,2 = (15/16n)fsin2Bcos2g, 
A { d,, = (15/16n)fsin2Bsin2q, f 2  "A 

TABLE 1 .  Droplet possessing cylindrical symmetry 

The forms of the five corresponding normal modes are shown in table 1.  They are the 
same as the normalized angular wave functions of the atomic d orbitals. Owing to the 
presence of the axis of rotational symmetry in the droplet, they form a basis for a 
representation of the group C,, which contains the irreducible representations Z+, ll, 
and A (e.g. Cotton 1963). Because of the double degeneracy of the ll and A symmetry 
species, there are only three different fundamental frequencies. For convenience, 
these have been designated wx, w, and wA, and correspond to m = 0, m = & 1 and 
m = & 2  respectively. 

From (2.49) these angular frequencies are 

(3.7) 1 W Z  = w R ( l  -0.675&,-2.176~~),  

W, = wR( 1 - 0 . 3 3 7 9 ~ ~  + 1 .4507c4), 

U A  = wR( 1 + 0.675&2-0.3627~~), 

where wR is the angular frequency of the 1 = 2 mode of the undistorted sphere, the 
Rayleigh frequency, and is given by 

(3.8) 
These results are in agreement with the work of Warham, who used the minimization 
of surface energy approach to  the calculations. They provide a good check on the 
general technique. 

An estimate of the relative intensity of each mode can be made for any particular 
axis of observation. For observations down the z-axis for example, measurements 
will be most sensitive to  changes in the diameter of the droplet in the (x, y)-plane, i.e. 
0 = in. For this case the relative intensities expected are shown in table 1 .  

wR = 27cvR = (8y/pa3$. 
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Frequency + 
FIGURE 3. Spectra expected for particular values of the e2 and e4 terms when observations are made 
from above. (a) e2 = 0, e4 > 0, symmetrically split spectrum. ( b )  e2 > 0, e4 = 0, asymmetrically split 
spectrum. 

Some points to note are that: (i) as a consequence of the rotational axis of 
symmetry a maximum of three fundamental vibration bands are predicted to be 
seen ; (ii) there is no a priori reason for the spectrum to be symmetrically split, in the 
sense of having equally spaced bands; (iii) when the distortion has only a E 
component, the spacing between the bands is in the ratio 3 : 1. When the distortion 
consists only of a component, the bands are equally spaced. The fundamental 
spectra expected are sketched in figure 3 ; (iv) the frequency of the central band of 
a symmetric spectrum need not be equal to the Rayleigh frequency of a spherical 
droplet of the same volume. 

= 0. 
Then, numerically, the maximum and minimum distortions occur when 8 = 0, that 
is, when R = +0.631s,. If the total distortion s2E has a maximum value of 0.1 (10% 
deviation from sphericity), e2 = 0.159 and the maximum frequency shift relative to 
the undistorted sphere is approximately 10.7%. For this case the fractional change 
in frequency is therefore comparable with the fractional distortion. 

To estimate the size of the splitting produced consider the situation when 

3.2. Constant magnetic jhx density : the frequency sum rule 

The second simplification is that in which the magnetic pressure depends on the 
instantaneous shape of the droplet but the magnetic flux density, B, does not vary 
as the droplet vibrates . 

To assess the effect of this assumption, suppose that the surface magnetic pressure 
can be expressed as a three-dimensional Taylor series of form 

p t  = C i j k  xi# Zk, 

U k  

with the Cijk  constants. Expressed in spherical polar coordinates, 

P ’ ( ~ , V )  = X p”u.n(rg/a)n Y ; ( ~ , v ) ,  
uvn 

(3.9) 

(3.10) 
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where the puvn are a set of coefficients that determine the magnetic flux density. It 
is now possible to calculate the i3pi/i3(Z, m 1 5 )  terms that appear in (2.59), supposing 
that the magnetic flux, and hence the PU,, terms remain unchanged during droplet 
oscillation. With this approximation, since &,,/a(Z? m 15) = aYy,  it follows that 

(3.11) 

From (3.10) and (2.43) i t  is apparent that R and PU,, are proportional, so neglecting 
terms of order higher than R2, at  equilibrium, when 6 = 0, this gives 

(3.12) 

This result can be substituted into (2.57). Although knowledge is still lacking about 
the individual p",, values, a useful result may be obtained by taking the trace of the 
block-diagonal submatrices of d22-W. That is 

+1 

x ( & B - l w ) l m , l m  = C. z(l-l)(z+2)+'x c ne,n(l,mlu,vlz,m> 
m m=-1 Y m uvn 

- c c (Z, mid ,  e 11, m) ( d ,  e IR) {3Z(Z- 1 )  (1+2) -i(Z2+51-2)d(d+ 1)).  (3.13) 

Now from the addition theorem of spherical harmonics (of which the familiar 
sin2 O+ cos2 8 = 1 is a particular case) 

d > l  m 

(3.14) 

and hence 

Consider the three translational frequencies, obtained by setting 1 = 1. As the trace 
of a matrix is equal to  the sum of its eigenvalues, then 

(3.16) 

where is the mean-square angular frequency of translational motion. 
Similarly for the I = 2 fundamental vibrational modes, 

- 
where wPfundamenta, is the mean of the squares of the fundamental, I = 2, frequencies. 
Hence 

u2funciarnental = 4 + 2 ~ : .  (3.18) 

This result shows that the mean-square frequency of the fundamental oscillation 
modes is raised by the influence of the magnetic field. This result is independent of 
any symmetry constraints on the form of the distortion from sphericity and so 
provides a general expression for the analysis of observed spectra. 

- - 



Oscillations of magnetically levitated aspherical droplets 407 

4. The induced magnetic field 
The various approximations discussed above were adopted in order to avoid the 

complexity of the problems associated with the presence of the levitating magnetic 
field. Although useful results were obtained these problems now need to be 
addressed. This section of the analysis therefore seeks: (i) to find the permanent 
distortion, R, given information about the magnetic field before the droplet is 
inserted; (ii) to find out how the magnetic pressure depends upon the instantaneous 
shape of the droplet. This will then allow the oscillation frequencies to be determined 
in terms of the parameters that describe the original magnetic field. 

A complete analysis of the situation necessarily requires a calculation of the 
induced electric currents in the droplet, such as has been done by Rony (1964). 
However, a considerable simplification can be made by using the previous assumption 
that the skin depth in which the currents are induced is very small compared to the 
radius of the droplet. Since there is now no magnetic flux within the bulk of the fluid, 
the effective intensity of magnetization, I ,  of the droplet can be found without 
recourse to any detailed description of the induced electric currents. 

Suppose that, before insertion of the droplet into the levitating field, the 
undistorted magnetic field strength is Hand  that, after insertion of the droplet, the 
total magnetic flux density external to the droplet surface is B,. Then 

(4.1) 
Outside the droplet, the current density is zero, so from Maxwell's equations it 
follows that 

B, = po H+ I .  

(4.2) 

where E is the electric field strength, and c the speed of light. For all reasonable 
frequencies of the levitating field alternating current, this last term is negligible, so 
to an excellent approximation, outside the droplet, V A B, = 0. Therefore B, can be 
expressed as 

where @ is a magnetic potential. (Note that @ is a scalar as distinct from the more 
usual magnetic vector potential, A.)  Since V. B, = 0 it follows that V2@ = 0 and so 
0 can be expanded as the series 

V . B , = O  and V A  B , = A - - ,  P aE 
c at 

B, = V@, (4.3) 

Here the i%?L terms may be identified as the coefficients which determine the (known) 
original field; the SV, terms describe the (induced) intensity of magnetization and 
may be evaluated as follows. 

If there is no magnetic flux density inside the droplet, then no magnetic flux lines 
can penetrate the surface of the droplet ; it therefore follows that the component of 
B, normal to the surface must be zero, that is 

R.  B,(surface) = 0 (4.5) 

or V@*Vr = 0, (4.6) 

and hence --- a@ 1L@.L&). 
dr r2 (4.7) 
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Let 6 be the total deviation from sphericity, that is 

D. L. Cummings and D .  A .  Blackburn 

5 = w, v) + ad, p l y  t )  

so that u = r-a( l+E),  then, a t  the surface, 

which gives, correct to first order in 5, 
x YE{U(  1 + [u - 13 5) X i  - (u + 1)(  1 - [u + 21 5) 3;} = -c (if; + 3;) LYE. Q 
uv uv 

(4.10) 
or 

d . ~ :  = ( d +  1 )  32-x SE{(~ ,  e 1 L Y ~ . ~ .  16) +u(u- l)(d, e 1 u, 'u 16)) 
uv 

- C 3 E { ( d , e I L Y " , . l I ) + ( u +  1 ) ( ~ + 2 ) ( d , e l u , v l t ) } .  (4.11) 
uv 

Therefore, when 6 = 0, one finds 

3; = s; u/(u+ 1) (4.12) 

and so, to  first order in 6, the components of the intensity of magnetization are given 
bY 

(4.13) 

The way in which these induced field coefficients change as the droplet oscillates is 
now determined. From (4.8), aLJ(1, m I C )  = Y y  and so, correct to first order in R, it 
follows from (4.13) that 

(4.14) 
or 

With these results it is now possible to express the magnetic pressure as a function 
of the droplet shape and the original magnetic field components, s;. From (2 .8 )  the 
magnetic pressure is given by : 

(4.16) 

which, from (4.9), correct to first order in the total displacement 5 reduces to 

2,u0p+ = - (L@/r);. (4.17) 

Equation (4.4) shows that at the surface, to first order in 6, 

(L@qV = c (S; + 9;) LYE ; 
uv 

(4.18) 
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therefore the magnetic pressure on an initially spherical droplet is 

2,uoa2pt = -2 2 x ~ x t ,  ( L ~ ) . ( L Y ~ , ) ,  
u v  u ‘ v ‘  

where for convenience x: is defined as 

2u+ 1 x,” = (&;. 
The permanent distortion of the droplet may now be found. From (2.55) 

1 
(LY;) - (fJ$) = - c Y:( d ,  e 1 u, v I u’, v’) {d  (d + 1 )  - u(u + 1 )  - u’(d + 1 )} 

de 

30 it follows from (2.43) and (4.19), for d > 1 ,  that 

409 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

This result allows the first-order permanent distortion to the sphere to be evaluated 
in terms of the original magnetic field components, &‘;. 

It now remains to calculate how the magnetic pressure will alter as the droplet 
vibrates. This is accomplished by differentiating (4.16) with respect to the component 
of surface movement (1 ,  m 15) to give : 

and hence 

(4.24) 

This result, together with that derived above for the permanent distortion may now 
be substituted in to (2.57) to give for the block diagonal, j = k, elements of dL%’-’bp 
the expression 

2poya(da-15f31k,lm = 2p0yaW- 1)(1+2)<1, k l  1,m) 

(1 ,  k I d ,  el 1, m X d ,  e Iu, v1 u’, v’) 
2(d- l ) (d+2)  - c c 11 X t X 5  

d-2 uv U’V’ 

x(d(d+l)-u(u+1)-u’(u’+l))  

x (31(1- 1)(1+2) + + ( 1 2 +  51-2) d(d  + I)) 

+ 1  2 2 c ~~x1Ju:(~,kld,el~,m)(d,elu,vlu’,v’) 
d-0 uv U’V‘ 

x (i(i+i)-a(a+i)-ai(a’+i)) 

x ( 1 ( 1 + 1 ) - d ( d + 1 ) - ~ ’ ( ~ ’ + 1 ) ) ( d ( d + 1 ) + ~ ( ~ + 1 ) - 1 ( 1 +  I ) ) ,  

(4.25) 
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FIGURE 4. Cross-section of the spatial distribution of the magnetic flux lines of a linearly varying 
levitating field that contains a droplet whose centre lies one radius distance below the field centre. 

which is the required result. It allows the forms of the normal modes of vibration and 
their associated oscillation frequencies of an actual droplet to be evaluated in terms 
of the parameters which describe the original undistorted levitating magnetic field. 

5. Application to the case of a linear magnetic field 
I n  this section the above general analysis is illustrated by considering the case of 

a droplet levitated by a particular magnetic field. A useful model to  choose is that  
where, k - H ,  the component of the original magnetic field strength along the z-axis, 
varies linearly with z. This is a good approximation to the real situation that has been 
found to exist along the axis of a levitating field produced by two single turn coils, 
aligned coaxially, but with currents flowing in opposite directions (Okress et al. 1952). 
Specifically suppose that 

where H,,  is a constant. Then in laboratory-frame coordinates, (X, Y, Z ) ,  since 
V - H  = 0, the magnetic field strength is given by 

( 5 4  

Suppose also that the centre of mass of the droplet lies a distance z,, below the centre 
of the levitating field, then in the droplet frame of reference, (2, y, z), the above linear 
field becomes 

H = H ,  k + t( - xi- yj+ 2 z k )  H,,, ( 5 .3 )  

where H,  = -z,,H,,. (5.4) 

H = t (  -Xi- Yj+ 2 Z k )  H,,. 

It is necessary to relate H ,  and H,, to the Z?? coefficients used earlier. To do this, 
consider the radial component of the field 

(5.5) 

(5.6) 

i -  H = (isin 8 cos rp + j sin 8 sin rp + k cos 8 )  - H 

= H ,  cos 8+$ H2,(3 C O S ~  8- 1) 
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FIGURE 5. Sections in the (x, 2)-plane of a permanently distorted droplet with radius at the surface 
given by yo = a( l  +eg e) for various values of E,.  (For clarity of presentation, a has been 
successively increased by 10 % but the actual distortion conserves the volume of the droplet.) 

Comparison with (4.9) enables the only non-zero X i  coefficients to be identified as 

(5.9) 

Note that for a spherical droplet, the only induced field coefficients will be the terms 
9: and 9:. These correspond respectively to an induced magnetic dipole and a linear 
quadrupole, both aligned parallel to the z-axis. The spatial distribution of the 
magnetic flux lines of such a field is illustrated in figure 4. This has been calculated 
for a droplet whose centre lies one radius distance below the centre of the undistorted 
field. 

The permanent distortion of the droplet from sphericit.y can now be evaluated 
from (4.22). There are only two non-zero magnetic field coefficients, x! and x:, which 
give three components to the deviation from sphericity. Of these, only two directly 
influence the 1 = 2 fundamental modes. They are 

& 7 0 - 4  - (gc) t po aH, and X :  = (&r)ipo a2 H,,. 

(5.10) 

(4,O I R) = d((S,!& a3/126y) HE,. (5.11) 

It can be seen that the sign of the (2,O I R) term depends on how far the droplet lies 
below the centre of the field. When the droplet is close to the field centre this term 
is negative and so imparts an oblate distortion to the droplet, but when the droplet 
is sufficiently deep within the field, this term becomes positive giving a prolate 
distortion (figure 1). The (4,OlR) term is always positive and so contributes a 
diamond-shaped cross-section to the drop (figure 2). 

The other deviation from sphericity introduced by the linear field is a coefficient 
of the distortion : 

(3,O I R) = (@)$(3p0 a2/ 107) H ,  H,, . (5.12) 

This term is always negative and describes an egg-shaped distortion of the droplet, 
the narrower part pointing downwards, as illustrated in figure 5.  

The effect on the frequencies is now evaluated from (4.25). For the linear field, with 
14 FLM 224 
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only the coefficients 2: and xi non-zero, the block-diagonal sub-matrices of dB-'V 
reduce to the diagonal form 

2 P o Y 4 ~ ~ - 1 w h , m  = 2PoYaW- 1)(1+2) 

x (d(d+ 1) -2u(u+ 1))(31(1- 1)(1+2) +4(z2+551-2) d(d+ 1)) 

x (d(d+l)+u(u+l)Z(Z+ l))', (5.13) 

so it is straightforward to obtain the eigenvalues. Consider first the translational 
modes by setting 1 = 1 ; this gives 

+-{ -:+3<1,ml 2,o I 1,m)(2,0 I2,O I2,O) 

+9(1, ml2,O) 1, m)'+32(3,mI 2,O I 1, m)'}.  (5.14) 
J 

Using the values of the integrals shown in the Appendix (table 2), the frequencies are 
thus found to be 

~i = ( ~ P O / ~ P )  HEz W: = (~PO/~P) fCz, (5.15) 

where o,, is the angular frequency of the motion parallel to the z-axis, and o1 is the 
angular frequency of the two degenerate translational modes in the (x, y)-plane. 

For the fundamental vibrational modes, set I = 2 in (5.12). This gives the 
eigenvalues 

(d9-#-1w)2m,2m = 8+- (x!)' { --- 11(2 ,m~2,0~2,m)(2 ,0~1,0~1,0)  
2POP IT 

I +2( l ,m I 1,012, m)'+ 16(3, m I 1,0 12, m)2 

+-{ -:+33(2, m I2,O 12, m)(2,0 I2,OI 2,O) + 12<2, ml2,O 12, m y  

- 16(2, m I4,O 12, m)<4,0 12,O I2,O) + 80(4, m I2,O 12, m)'}  , (5.16) 

and hence the frequencies are 

W; = W ;  + ?( 3.832 - 0.17 14( %/a)') ,  

oh = w;+?(3.775+0.5143(q,/a)'), 
- 

W: = w ~ + o J , " (  -0.9297 +2.571(%/~~)~).  

(5.17) 
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50k 
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38r. . . . . . . . . 
2 4 6 8 10 I 

R.m.s. translation ( I  = 1)  frequency (Hz) 

FIQURE 6. Showing how the three fundamental frequencies, vr, v,, and v,, of a droplet that is 4 mm 
in diameter and has a 40&z Rayleigh frequency are predicted to vary as a function of the r.m.8. 
translational frequency (v$. 

In the above expressions, the quantities zo and are in fact related because of the 
requirement (2.44) that the lifting force must balance the weight of the droplet. From 
(4.19) and (4.21) and neglecting terms of order R2 and higher, it follows that 
equilibrium is achieved when 

F, = - 2p0 na3H, H,, = i n ~ ~ p g  (5.18) 

and so from (5.14) one finds 
zo = g/2w,2. (5.19) 

This result has been used to construct figure 6, where, to illustrate the effect the 
linear field has on the frequencies, the set of equations (5.17) has been plotted using 
arbitrary values of 4mm for the droplet diameter and 40Hz for the Rayleigh 
frequency. It can be seen that if the field gradient is sufficiently large (high 
translational frequencies), the C and ll frequencies converge, causing the fun- 
damental to appear to be split into just two bands. 

Some points to note are that, when the magnetic field shows a linear change of 
intensity in the z-direction : 

(i) The translational frequencies are determined only by the density of the droplet 
and the magnetic field strength gradient, H,,. This latter result is to be expected, 
since, in a magnetic field of constant intensity, there is no net lifting force on the 
droplet, and hence no restoring forces which could lead to a translational frequency. 

(ii) The w,, translational frequency will always be exactly twice that of the pair of 
wI translations. This can provide a useful indicator of the effective linearity of the 
field. 

(iii) The Rayleigh frequency, from which the surface tension may be evaluated, is 
now related to the individual vibrational frequencies from (5.17) by 

(5.20) 

which may be compared to the frequency sum rule, (3.18), obtained previously. It 
14-2 
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can be seen that the correction factor now depends upon the relative position of the 
droplet in the field. 

6. Discussion 
The calculations show that the characteristic splitting of the expected single 

frequency of the fundamental mode of vibration of a spherical droplet into either 
three, or five bands, can be explained by the deformation of the droplet from 
sphericity caused by the effects of the supporting electromagnetic field. 

Busse (1984) has shown that an equally spaced five-band spectrum will occur in 
the case of a rotating spherical droplet. This work shows that a three-band spectrum 
will arise when the droplet is subject to a deformation which preserves an axis of 
rotational symmetry. If the magnetic field fails to preserve such an axis of symmetry 
five unequally spaced bands will occur. 

Because the nature of the deformation from sphericity depends on the spatial 
distribution of the magnetic field, the equilibrium shape, and hence the form of the 
spectrum obtained, should in principle change with the relative position of the centre 
of mass of the droplet within the levitating field. This feature of the model is clearly 
amenable to  experimental test. 

In  approaching the problem of analysing experimental spectra, the magnetic field 
and the induced currents which cause levitation can be regarded as a pressure acting 
on the surface of the droplet, in addition to the pressure already being produced by 
the surface tension forces. In  consequence, the surface tension appears to be 
increased over its normal value. This requires a small correction to  be made in all 
analyses of surface energy. 

A simple model, where the magnetic flux is assumed to  remain constant, has the 
consequence that an evaluation of the Rayleigh frequency can be made in terms of 
the observed fundamental oscillation frequencies, ui, and the frequencies of the 
translational motion of the droplet : 

l 5  - 

5 i - 1  
(d; = -c w:-2w,2. (6.11 

The more detailed treatment of the magnetic field shows a correction factor to the 
Rayleigh frequency of similar magnitude for a droplet close to the centre of the field, 
but one that is also sensitive to the position of the droplet in the field. This position 
dependency could be important, if for example one were trying to measure small 
changes in surface tension in a series of differing physical conditions such as 
temperature or impurity concentration ; the experimentor would need to take care 
that the droplet was always in the same relative position in the field. 

Note also that when all five bands can be seen, the models provide a unique 
estimate of the Rayleigh frequency, and hence the surface tension. I n  the case of 
cylindrical symmetry, however, three bands are normally predicted. When this 
happens, two pairs in the five bands have identical frequencies, that is, two are 
doubly degenerate and (6.1) becomes 

(6.2) 

A problem of assignment now arises as any of the three bands can in principle be the 
non-degenerate band. It is possible only to provide upper and lower limits for the 

w k  = ;(WE + 2 4  + 2 4 )  - 2 q .  
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surface energy, according to whether the non-degenerate band is either the highest, 
w,,, or the lowest urnin of the three observed bands. Then 

(6.3) 
This problem of band assignment is the subject of a future paper. 

We wish to express our thanks to both the Open University Research Committee 
and the National Physical Laboratory, Teddington, UK for supporting this work. 

Appendix 
The way in which the effective magnetic pressure of B:/2p0 on the surface of the 

droplet arises as a consequence of assuming that the magnetic flux density is 
excluded from the interior of the droplet can be shown as follows. 

From the Maxwell equations, the current density induced by a field of the form 
B = H ( a )  B, (equation (2.7)) is given by 

p J =  V A B =  H(a)V A B,+VH(a)  A B, 

po J = 8(a) Va A B,, 

(A 1) 

and since outside the drop the current density is negligible (equation (4.2) et seq.), 
V A B, = 0, which yields 

where 8(a) = cW(a)/da is the Dirac delta function. 

is 

and since the condition V. B = V - B, = 0 requires &(a) B,. V a  = 0 (cf. equation (4.5)), 
this gives 

The excess pressure inside the droplet is found by integrating along a line, L, which 
starts at  a point just outside the drop and ends at  a point just inside. That is 

(A 2) 

From (2.6) the pressure gradient in the droplet due to the electromagnetic forces 

V p =  J A  B,  (A 3) 

poVp = - ~ ( u ) H ( c T ) B ~ V ~ .  (A 4) 

pt = p(inside)-p(outside) = Vp-dr (A 5) L 
= iI::8(a)H(a)B:da (A 6) 

= (B:/2Po),-o. (A 7 )  
which is the required result. 

m = + l  

(3/20n)i 

(9/70x)r 

(6/35a)k 
(5/ 196~): 
(15/98p 

2/7n? 

- 1 /( 20799 

m = k 2  

0 
0 
0 

(3/28a)f 

(15/196~)2 
1/14nr 

- (5/49n)1 

TABLE 2. Integrals required for linear field model (Albasiny, Bell & Cooper 1963) 
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